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Abstract

Troubleshooting Grid workflows is difficult. A typical
workflow involves a large number of components – net-
works, middleware, hosts, etc. – that can fail. Even when
monitoring data from all these components is accessible, it
is hard to tell whether failures and anomalies in these com-
ponents are related to a given workflow. For the Grid to be
truly usable, much of this uncertainty must be eliminated.
We propose two new Grid monitoring elements, Grid work-
flow identifiers and consistent component lifecycle events,
that will make Grid troubleshooting easier, and thus make
Grids more usable, by simplifying the correlation of Grid
monitoring data with a particular Grid workflow.

keywords: Grid performance, Grid troubleshooting,
Grid Services

1 Introduction

One of the central challenges of Grid computing today
is that Grid applications are prone to frequent failures and
performance bottlenecks. The real causes of failure are of-
ten hidden by intervening layers of application, middleware,
and operating systems. For example, assume a simple Grid
workflow has been submitted to a resource broker, which
uses a reliable file transfer service to copy several files and
then runs the job. Normally, this process takes 15 minutes
to complete, but two hours have passed and the job has not
yet completed. In today’s Grid, it is difficult to determine
what, if anything, went wrong. Is the job still running or
did one of the software components crash? Is the network
particularly congested? Is the CPU particularly loaded? Is
there a disk problem? Is a software library containing a bug
installed somewhere?

In the simple case where the resources and middleware
are only servicing one workflow, current Grid monitoring

systems can answer these questions by correlating the work-
flow performance with the timestamps on the associated
monitoring data. But the whole point of a Grid is that re-
sources and middleware are shared by multiple workflows.
In this case, workflows will interleave their usage of mid-
dleware, hosts and networks. At the highest level of middle-
ware, e.g., the resource broker in the example above, there
may be an identifier that can track the workflow. But once
the workflow leaves that layer, there is very little beyond
rough time correlation to help identify which monitoring
data is associated with which workflow.

With enough monitoring data, and enough time spent in
analysis, troubleshooting is still possible. For instance, net-
work packet traces can reveal the traffic patterns relevant to
a given application (assuming ports and hosts are known);
multiple runs of the same workflow can allow better guesses
at which performance anomalies are correlated, and which
are due to other workflows; etc. But this is tedious, non-
reusable, work.

Fortunately, with the addition of two simple elements,
we can improve the troubleshooting process across the
board. Previously, we have argued [?] that Grid monitor-
ing and troubleshooting systems should have the following
elements:

• Globally synchronized clocks (e.g., with NTP [?]])

• End-to-end monitoring data (hosts, networks, middle-
ware, application)

• Archiving (e.g., logs, relational database)

• Standard data model (e.g., timestamp, name, values)

• Dynamic control of monitoring granularity

The two new elements we propose are Grid work-
flow identifiers (GIDs) and consistent component lifecycle
events. A GID is a globally uniquekeythat can track a Grid
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Figure 1. Example Grid Workflow.

workflow across components. The GIDs would be gener-
ated at the time the workflow was created, and then trans-
ferred between layers of middleware and across adminis-
trative domains. Component lifecycle events are monitor-
ing events that mark the start and end of every component’s
lifecycle in a consistent and useful way; in particular they
include the GID to identify the workflow to which this life-
cycle belongs.

1.1 Extended Use-Case

Assume the Grid workflow shown in Figure??. The
workflow, which uses multiple input files and generates
multiple output files, is submitted via a portal to a resource
broker. The resource broker determines the best compute
and storage resources to use for the workflow at this time
based on some information from Ganglia [?] host monitor-
ing and the PingER [?] network monitoring system. Data is
staged using a replica manager, which uses a Reliable File
Transfer service [?], which in turn uses GridFTP [?]. A job
is submitted to the Globus Gatekeeper [?], which passes it
to the Globus Job Manager, which authorizes the user us-
ing Akenti, which hands the job off to Portable Batch Sys-
tem (PBS) [?] scheduler, which runs the job. Output data
files are then send to a High Performance Storage System
(HPSS) [?] installation using the Storage Resource Man-
ager (SRM) [?] middleware.

This workflow uses many software components, any of
which may potentially fail due to software, hardware, or
network problems. At a minimum, the example above uses
the following components: a Grid portal, resource broker,
Ganglia, PingER, replica manager, Reliable File Transfer
service, GridFTP service, SRM service, Globus Gatekeeper,
Globus job manager, Akenti, PBS, and HPSS. The applica-
tion itself may also use external components.

We will refer back to the above use-case as we discuss
the importance of using GIDs.

2 Related Work

In this section, we describe some related work in the area
of Grid workflows and Grid monitoring.

2.1 Global Clock Synchronization with NTP

Much has been written about the theory of global clock
synchronization (e.g., [?]). In distributed systems, the dom-
inant implementation is the Network Time Protocol (NTP).
Globally synchronizing clocks with the Network Time Pro-
tocol (NTP) is, by now, common practice. It is config-
ured by default in most flavors of Linux; in fact, NTP is
arguably the oldest continuously used protocol on the Inter-
net. Although its accuracies of “low tens of milliseconds on
WANs, submilliseconds on LANs” [?] are not ideal, they
are often sufficient for Grid troubleshooting. And, anec-
dotally, our experience is that the networks used for Grid
computing tend to have accuracies even better than tens of
milliseconds, more often in the range of two to five millisec-
onds.

2.2 Grid Workflow Engines

Although workflow is a familiar concept in Computer
Science, implementations of workflow engines for the Grid
are still in the early stages. One of the more widely used
engines is the Condor [?], Directed Acyclic Graph Man-
ager (DAGMan), which is a meta-scheduler that interfaces
with the standard Condor scheduler. The DAGMan submits
jobs to Condor in an order represented by a directed acyclic
graph (DAG) and processes the results. To monitor DAGs,
Condor sends status andstandard error, output from a run-
ning DAG back to a user-specified log file. This monitoring
information is not end-to-end: it does not include applica-
tion, network, or host data, or monitoring data from jobs
that are handed off to other schedulers such as the Globus
JobManager. Because a DAG is itself a Condor job, it is as-
signed Condorjob clusteridentifier, but this identifier is not
propagated outside of Condor components. In order to get
host and network status, Condor provides the Hawkeye [?]
monitoring tool, but the integration of the Hawkeye sensor
data with the built-in Condor job monitoring is a work in
progress.

The Pegasus [?] workflow system provides an extra layer
of abstraction on top of DAGMan. In Pegasus, users pro-
vide anAbstract Workflowthat describes virtual data trans-
formations. This is transformed into aConcrete Workflow
that contains actual data locations. This concrete workflow
is submitted to DAGMan for execution. The monitoring and

2



identification of the workflow in Pegasus are essentially the
same as for DAGMan.

The preceding systems are not built on Web Services
technologies. However, Web Services is becoming an im-
portant part of Grid functionality. In the Web Services com-
munity, workflows are addressed in several specifications,
including the Business Process Execution Language for
Web Services (BPEL4WS) [?] specification from IBM, and
the OASIS Web Services Coordination Framework specifi-
cation [?]. The Web Services Resource Framework (WS-
RF) [?] is a convergence of Web Services technologies with
the Open Grid Services Architecture (OGSA) [?]. Several
groups anticipate using WS-RF for executing Grid work-
flows.

2.3 Grid Monitoring

There are a number of distributed monitoring projects
that can provide the raw data needed for analysis of end-
to-end performance. Cluster tools such as Ganglia [?]
and Nagios [?] can scalably provide detailed host and net-
work statistics. This data can be integrated into monitoring
frameworks such as the European Data Grid’s Relational
GMA (R-GMA) [?], the Globus Monitoring and Discovery
Service (MDS), or Monitoring Agents using a Large Inte-
grated Services Architecture (MonALISA) [?].

At LBNL we have developed the NetLogger Toolkit [?],
which provides non-intrusive instrumentation of distributed
computing components. Using NetLogger, distributed ap-
plication components are modified to produce time-stamped
logs of interestingevents at all the critical points of the dis-
tributed system. NetLogger uses a standard data model, al-
lows for dynamic control of logging granularity, and can
collect monitoring data in a relational database.

There are many more Grid monitoring tools. In fact, the
main challenge for current Grid monitoring efforts is inter-
operability between implementations: there are many com-
peting sensors, data models, formats, and protocols. We
do not discuss how tosolvethis problem here, but we do
believe that adoption of a standard GID across monitoring
components will augment and help drive Grid monitoring
interoperability efforts.

3 Grid Workflow Identifiers

In this section, we discuss the representation of GIDs and
the interfaces needed for Grid Services to support them.

3.1 Creating Identifiers

The GID should be chosen at the root, or originator, of
the workflow, so that it can propagate to all components.
The originator could be a Web portal, Grid meta-scheduler,

or other client program. A primary requirement for GIDs is
that they be unique within the scope of the workflow. On the
Grid, this usually means that they must be unique in space
and time, particularly if the results are to be archived or
shared. Although distinct identifiers in a local scope could
be mapped to globally unique ones post-hoc, this mapping
process is a potential source of errors that can be avoided by
simply creating a globally unique identifier to begin with.

Creating a globally unique identifier is not hard. Proce-
dures for creating a Universal Unique Identifier (UUID) [?]
are specified in ISO 11758 [?] and in the documentation for
the OSF Distributed Computing Environment [?]. In both
specifications, UUIDs combine a name from some centrally
administered namespace tied to the host (the network hard-
ware address, DNS, etc.) with a high-resolution timestamp.
On most operating systems, including Linux, Mac OS-X,
and Windows, using the OSF DCE universal identifiers is
as simple as running the program uuidgen or making API
calls to the libraryuuidlib.

3.2 Integration with Grid Services

Propagating GIDs from the workflow originator to all the
workflow components is the most technically challenging
part of using GIDs. Referring back to the Grid workflow
from Section 2, each edge in the workflow graph (Figure
1) can be seen as two transfers of the GID: one between
Grid components, and a second transfer from the compo-
nent to its logging facility. Some mechanism must be added
to existing software for this to work. We see two basic ap-
proaches to this problem. The first approach is to modify,
component-by-component, the existing interfaces to sup-
port transfer of the GID. This is easier in the short term,
and is the approach we took to perform the experiment de-
scribed in Section 5.0

The second approach is to integrate GIDs at the ground
floor of a general-purpose Grid framework such as the
Open Grid Services Architecture (OGSA) [?], on which the
Web Services Resource Framework (WS-RF) [?] is based.
We think that this solution has advantages in the long term,
because it allows components to change their service def-
initions independently of the GID interface. Also, it does
not require an ongoing programming effort by all the users
of Grid software. On the other hand, this approach requires
a standardization effort. The choice of implementation
technology is secondary, but two possibilities are that all
Grid services could support a standard WSDL [?] portType
for GIDs, or the WS-RF framework could support carrying
the GID in a SOAP [?] header field. As an example of the
latter, an element calledGID in an officially sanctioned
namespace, here assigned the prefixgridnscould be added
to the SOAP header:
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<SOAP-ENV:Envelope>
<SOAP-ENV:Header>

<gridns:GID SOAP-ENV:role=
‘‘http://www.ggf.org/Workflow">

dc62ebb8-15f6-429e-9241-
f935f96f6964

</gridns:GID>
</SOAP-ENV:Header>

<SOAP-ENV:Body>
(message contents)

</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

The SOAP-ENV:roleattribute indicates the namespace
URI of the message receivers (either the ultimate receiver or
intermediaries along the way), in SOAP parlance called ac-
tors, that should look at this header. Actors that do not know
about the namespacehttp://www.ggf.org/Workflowwill sim-
ply ignore the GID header. Finally, it should be noted
that support for GIDs is not an all-or-nothing proposition;
support in some components may allow inference of the
GIDs in other components in the same workflow by map-
ping shared context to a GID. For example, consider a par-
allel GridFTP transfer. The start and end of the transfer
are marked with a GID, URL being transferred, and ports
set up for the transfer. Then low-level monitoring from
the GridFTP transfer logs can be mapped to the same GID
by matching the URL, port, and time range for the trans-
fer start/end events against the URL and port for transferred
files. Making this inference requires extra analysis code, but
it is a general solution: the same code can aid the analysis
of all workflows using those components.

4 Standard Component Lifecycle Events

Tracing the progress of Grid workflow is difficult if there
areholesin the monitoring logs where the workflow leaves
one component and reappears several components down the
line. Filling theseholes after the workflow has already
started is difficult. Even if there are well-documented con-
trol APIs, a workflow, unlike a process on a single host, is
tricky to pause, restart, or query for information that it is
not already pre-configured to log. Therefore, it is impor-
tant that all Grid components are configured to perform at
least a minimal level of logging. Specifically, every Grid
component should log at least one monitoring event when it
starts and one just before it ends, indicating failure or suc-
cess. This technique (in coordination with GIDs) allows
troubleshooting systems to see which components are asso-
ciated with the workflow, and to determine which of those
components completed successfully, failed, or are still exe-
cuting.

At a minimum, thestart andstopevents, should have a
timestamp, name of the event, host (or host pair for network

events), and a GID. Thestop event should also include a
status code. For example, the Globus GateKeeper might log
these monitoring events:

Timestamp : 2004-02-02T22:21:35.753024
Event Name : gateKeeper.start
Host : 131.243.2.22
GID : b21746a9-6cb8-4256-93e1-1a310...

.. GateKeeper execution ..
Timestamp : 2004-02-02T22:21:35.839715
Event Name : gateKeeper.end
Host : 131.243.2.22
GID : b21746a9-6cb8-4256-93e1-1a310...
Status : Success

Although Grid performance analysis benefits from much
more detailed logging than this, the component lifecycle
events alone provide a reasonable overview of the relative
time spent in various Grid components. This is illustrated in
the graphs of experimental results shown in the next section.

5 Experimental Results

At the IEEE Supercomputing Conference in November
2003 (SC2003), we demonstrated tracing a workflow for a
distributed biochemistry computation called AMBER [?].
The following components were instrumented with Net-
Logger:

• pyGlobus: pyglobusrun, pyglobus-url-copy

• Globus GateKeeper

• Globus JobManager

• Akenti (access control policy library)

• AMBER

Start and end events, with GIDs, were logged for each
component. From these monitoring events, we could visu-
alize the file staging, remote execution, and access-control
steps of the job. The demonstration GUI used the status and
error codes from the NetLogger messages to draw alifeline
(line connecting successive events on the Y-axis vs. time on
the X-axis) of events that indicate to the user the progres-
sion of the file staging and job execution components.

5.1 Experimental Procedure

For this demonstration our methods of inserting the GID
into the logging were ad-hoc and specific to the compo-
nents we were using. This task was simplified by our use of
pyGlobus [?], which provides high-level Python language
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wrappers for Globus Toolkit components. We quickly in-
tegrated NetLogger’s Python API with pyGlobus to cre-
ate instrumented versions of the pyglobus-url-copy and py-
globusrun programs. First, we modified the pyglobusrun
command to add a GID to the Resource Specification Lan-
guage (RSL) of each job being submitted. Next we had to
modify the Globus GateKeeper, which has no knowledge of
GIDs, to read the GID from the RSL of the submitted job.
Once the GateKeeper had the GID, we took advantage of
the fact that both Akenti and the AMBER application were
a child processes of the GateKeeper, and simply passed the
GID to them via Unix environment variable (see below).
The GridFTP client was also built using pyGlobus, so trans-
ferring the GID to the Reliable File Transfer Service (RFT)
could be done within Python.

The GID is communicated to the NetLogger instrumen-
tation in each component through an environment variable,
NETLOGGERDEST, that contains a URL of the formlog
destination?constGID=value. This sets the file or network
destination for the monitoring events, and also adds the
name/value pair GID=value to all events. Using this feature,
we added GIDs to all NetLogger-instrumented components
without changing the instrumentation itself or re-compiling
the components. For more details on NetLogger URLs, see
[?].

5.2 Analysis of Results

To illustrate how GIDs help to correlate the results, we
show, in Figure 2, two versions of the same monitoring
data. Both graphs have six separate AMBER jobs, of vary-
ing length. Each job stages its data, submits to the Globus
GateKeeper, gets authorized by Akenti, runs the AMBER
application, and then returns the results. In the first graph,
the GID is ignored and only time correlation is performed.
In the second, the GID is used to connect successive events
into a lifeline. Note how the monitoring events for the en-
tire life of the first job, or during the overlaps of the third
and fourth jobs between 75 to 100 seconds (circled in the
figure), are clarified with the addition of GIDs.

The graph also shows the importance of consistent com-
ponent lifecycle events. During this set of runs, two of the
jobs were killed prematurely. This shows up on the graph as
a failure to transfer the (non-existent) result data, i.e. miss-
ing events in thetransfer resultssection of the lifeline. Nor-
mally, failures of this sort are clear from the job’s return
value, but in this case a false value ofsuccesswas being re-
turned. Despite this false positive, consistentstart andend
events for every step of the job still alert the user to an error
in these application runs.

Not discussed in this paper is NetLogger’s activation ser-
vice, which provides the ability to activate more detailed in-
strumentation and debugging information in a running pro-

Figure 2. Amber Workflow.
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Figure 3. Amber Instrumentation with CPU
monitoring.

cess. This allows one todrill down to find the source of
problems or bottlenecks. This is described in more detail in
[?].

5.3 Workflow-Independent Monitoring Data

Some monitoring data cannot be directly associated with
a particular workflow. For example, host monitoring data
(CPU, disk, memory, etc.) or network monitoring data can
encompass, at a given point in time, any number of work-
flows. Sometimes, as noted in Section 3.2, with other types
of context we can infer the GID. But this is not always the
case. As a fallback, we must use time stamps. A graph
showing this type of analysis is shown in Figure 3. In this
graph, it is clear that increased CPU utilization, shown at
the bottom of the graph, correlates with decreased perfor-
mance for the AMBER job. If we could categorize the sys-
tem and user CPU data by process (PID), and then associate
that with a GID, we could be more certain that the change in
CPU was indeed correlated with the application workflow’s
performance. Despite the apparent correlation in Figure 3,
the results are actually quite tentative: it is possible that host
CPU and AMBER performance change at the same time by
coincidence, or due to a third factor (another workflow, a
rogue vi process, etc.). Verifying this analysis requires ei-
ther detailed logs from the entire system or an unambiguous
identifier like a GID.

6 Open Issues

A GID could be designed to provide some additional in-
formation about the workflow itself, for example to indicate

the parent-child relationship among workflow nodes or con-
tain metadata about the originator of the workflow. We are
wary of this approach because any metadata embedded in
the GID may complicate its representation or interpretation.
Instead, we believe that this functionality should be layered
on top of the GID, e.g. by using the GID as a key to locate
and update the metadata in a central repository. As we gain
more experience with Grid workflows, this intuition may
prove to be wrong; but currently we know of no compelling
reason to justify complicating GIDs with workflow-specific
metadata.

7 Conclusion

Troubleshooting a workflow in current Grid environ-
ments is difficult. By default, many components produce
no monitoring data and, even when they do, the monitoring
data is difficult to correlate with the data from other compo-
nents in the same workflow. We believe that an important
first step to solving this problem is to build into the Grid in-
frastructure standard interfaces to Grid workflow identifiers
(GIDs), and to add to every Grid component standardized
lifecycle monitoring events. In this paper, we have outlined
the technologies needed to create GIDs and integrate them
with Grid monitoring services. We have also described the
requirements for lifecycle monitoring events. Using results
from our Supercomputing demonstration, we have shown
how these two elements, working together, can form the
basis for a clearer understanding of the behavior of a Grid
workflow.
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